德光浦-专注光学测量和仪器研发

德光浦科技

当前位置: 德光浦科技 > 光电知识 >

多光谱与高光谱的区别

时间:2020-10-13 14:43来源:网络 作者:网络 点击:
随着光谱分辨率的不断提高,光学遥感的发展过程可分为:全色(Panchromatic)彩色(Color Photography)多光谱(Multispectral)高光谱(hyspectral)。 注: 全色波段(Panchromatic band),因为是

    随着光谱分辨率的不断提高,光学遥感的发展过程可分为:全色(Panchromatic)→彩色(Color Photography)→光谱(Multispectral)→高光谱(hyspectral)。
注:

    全色波段(Panchromatic band),因为是单波段,在图上显示是灰度图片。全色遥感影像一般空间分辨率高,但无法显示地物色彩。实际操作中,我们经常将之与波段影像融合处理,得到既有全色影的高分辨率,又有多波段影的彩色信息的影
    全色波段,一般指使用0.5微米到0.75微米左右的单波段,即从绿色往后的可见光波段。全色遥感影也就是对地物辐射中全色波段的影摄取,因为是单波段,在图上显示是灰度图片。全色遥感影一般空间分辨率高,但无法显示地物色彩。

光谱遥感
    光谱遥感:将地物辐射电磁波分割成若干个较窄的光谱段,以摄影或扫描的方式,在同一时间获得同一目标不同波段信息的遥感技术。
    原理:不同地物有不同的光谱特性,同一地物则具有相同的光谱特性。不同地物在不同波段的辐射能量有差别,取得的不同波段图像上有差别。
    优点:光谱遥感不仅可以根据影像的形态和结构的差异判别地物,还可以根据光谱特性的差异判别地物,扩大了遥感的信息量。
    航空摄影用的光谱摄影与陆地卫星所用的光谱扫描均能得到不同谱段的遥感资料,分谱段的图像或数据可以通过摄影彩色合成或计算机图像处理,获得比常规方法更为丰富的图像,也为地物影像计算机识别与分类提供了可能。


图1.用多光谱相机拍摄的某地区海面光谱图像和分析的数据

光谱
    高光谱遥感起源于20世纪70年代初的光谱遥感,它将成像技术与光谱技术结合在一起,在对目标的空间特征成像的同时,对每个空间像元经过色散形成几十乃至几百个窄波段以进行连续的光谱覆盖,这样形成的遥感数据可以用“图像立方体”来形象的描述。同传统遥感技术相比,其所获取的图像包含丰富的空间、辐射和光谱三重信息。
    高光谱遥感技术已经成为当前遥感领域的前沿技术。
    高光谱遥感具有不同于传统遥感的新特点:
    1)波段多:可以为每个像元提供十几、数百甚至上千个波段;
    2)光谱范围窄:波段范围一般小于10nm;
    3)波段连续:有些传感器可以在350~2500nm的太阳光谱范围内提供几乎连续的地物光谱
    4)数据量大:随着波段数的增加,数据量成指数增加;
    5)信息冗余增加:由于相邻波段高度相关,冗余信息也相对增加。
    优点:
    1)有利于利用光谱特征分析来研究地物;
    2)有利于采用各种光谱匹配模型;
    3)有利于地物的精细分类与识别。

异同点
    国际遥感界的共识是光谱分辨率在λ/10数量级范围的称为光谱(Multispectral),这样的遥感器在可见光和近红外光谱区只有几个波段,如美国 LandsatMSS,TM,法国的SPOT等;而光谱分辨率在λ/100的遥感信息称之为光谱遥感(HyPerspectral);随着遥感光谱分辨率的进一步提高,在达到λ/1000时,遥感即进入超高光谱(ultraspectral)阶段( 陈述彭等,1998)。
    高光谱光谱实质上的差别就是:高光谱的波段较多,谱带较窄。(Hyperion有233~309个波段,MODIS有36个波段)
    光谱相对波段较少。(如ETM+,8个波段,分为红波段,绿波段,蓝波段,可见光,热红外(2个),近红外和全色波段)
    高光谱遥感就是比光谱遥感的光谱分辨率更高,但光谱分辨率高的同时空间分辨率会降低。

 

转载于:https://www.cnblogs.com/zgl-gis/p/10677697.html (图片来自德光浦

(责任编辑:德光浦)
织梦二维码生成器
顶一下
(7)
100%
踩一下
(0)
0%
------分隔线----------------------------
说点什么吧
  • 全部评论(0
    还没有评论,快来抢沙发吧!
推荐内容
热点内容